Finite element approximation of the fields of bulk and interfacial line defects

نویسندگان

  • Chiqun Zhang
  • Amit Acharya
  • Saurabh Puri
چکیده

A generalized disclination (g.disclination) theory [AF15] has been recently introduced that goes beyond treating standard translational and rotational Volterra defects in a continuously distributed defects approach; it is capable of treating the kinematics and dynamics of terminating lines of elastic strain and rotation discontinuities. In this work, a numerical method is developed to solve for the stress and distortion fields of g.disclination systems. Problems of small and finite deformation theory are considered. The fields of a single disclination, a single dislocation treated as a disclination dipole, a tilt grain boundary, a misfitting grain boundary with disconnections, a through twin boundary, a terminating twin boundary, a through grain boundary, a star disclination/penta-twin, a disclination loop (with twist and wedge segments), and a plate, a lenticular, and a needle inclusion are approximated. It is demonstrated that while the far-field topological identity of a dislocation of appropriate strength and a disclination-dipole plus a slip dislocation comprising a disconnection are the same, the latter microstructure is energetically favorable. This underscores the complementary importance of all of topology, geometry, and energetics in understanding defect mechanics. It is established that finite element approximations of fields of interfacial and bulk line defects can be achieved in a systematic and routine manner, thus contributing to the study of intricate defect microstructures in the scientific understanding and predictive design of materials. Our work also represents one systematic way of studying the interaction of (g.)disclinations and dislocations as topological defects, a subject of considerable subtlety and conceptual importance [Mer79, AMK17].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of Laminated Soft Core Sandwich Plate Having Interfacial Imperfections by an Efficient C0 FE Model

An efficient C0 continuous two dimensional (2D) finite element (FE) model is developed based on a refined higher order shear deformation theory (RHSDT) for the static analysis of soft core sandwich plate having imperfections at the layer interfaces. In this (RHSDT) theory, the in-plane displacement field for the face sheets and the core is obtained by superposing a globally varying cubic displa...

متن کامل

Optimal order finite element approximation for a hyperbolic‎ ‎integro-differential equation

‎Semidiscrete finite element approximation of a hyperbolic type‎ ‎integro-differential equation is studied. The model problem is‎ ‎treated as the wave equation which is perturbed with a memory term.‎ ‎Stability estimates are obtained for a slightly more general problem.‎ ‎These, based on energy method, are used to prove optimal order‎ ‎a priori error estimates.‎

متن کامل

Buckling Analysis of Composite Lattice Cylindrical Shells with Ribs Defects

In this paper, the buckling behavior of a composite lattice cylindrical shell is studied and effects of rib defects on the distribution of stress field and buckling response of the shell is investigated. A three dimensional finite element buckling analysis of the lattice shell is carried out using ANSYS suit of program. Geometrical data and material properties of the shell are obtained from the...

متن کامل

Study of Stone-wales Defect on Elastic Properties of Single-layer Graphene Sheets by an Atomistic based Finite Element Model

In this paper, an atomistic based finite element model is developed to investigate the influence of topological defects on mechanical properties of graphene. The general in-plane stiffness matrix of the hexagonal network structure of graphene is found. Effective elastic modulus of a carbon ring is determined from the equivalence of molecular potential energy related to stretch and angular defor...

متن کامل

Finite Element Method Application in Analyzing Magnetic Fields of High Current Bus Duct

The goal of paper is to present the magnetic field calculations in high current bus ducts. Finiteelement method is used to do this. Bus ducts under study have figure such as circle area. Thecalculations will be using mathematical relations, meshed geometric shape and analyzing them.Geometric mean will help us to determine the value of magnetic field. COMSOL software is appliedfor simulation stu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017